Vaccines and Protection by B.R. Shenoy

Vaccines protect us
Trigger an immune response
Prevent infection

by B.R. Shenoy

Mechanism of Action of Vaccines

“A vaccine works by training the immune system to recognize and combat pathogens, either viruses or bacteria. To do this, certain molecules from the pathogen must be introduced into the body to trigger an immune response.

“These molecules are called antigens, and they are present on all viruses and bacteria. By injecting these antigens into the body, the immune system can safely learn to recognize them as hostile invaders, produce antibodies, and remember them for the future. If the bacteria or virus reappears, the immune system will recognize the antigens immediately and attack aggressively well before the pathogen can spread and cause sickness”

PublicHealth, ‘How Vaccines Work’

B.R. Shenoy is a biochemistry and chemical toxicology, M.S. She is a contributing writer for The Good Men Project. Her work has also appeared in Scary Mommy, Positively Positive, and Idle Inks. She is a content creator on Medium. You can catch up with her on Twitter @Shenoy100.

This sciku was originally published on Medium: https://medium.com/illumination/vaccines-and-protection-a-sciku-ca1491e36b13

Wildfire’s Secrets

Hidden harm of smoke.
Microbial long-haul flights.
Lurking, infecting.

Wildfires cause huge amounts of long-term harm, including human, other animal and plant deaths, habitat loss, property and infrastructure destruction, the loss of carbon reservoirs and increased chances of flooding and landslides. Small airborne particles in smoke can be inhaled and cause fatal problems within the respiratory system, whilst the high levels of carbon monoxide produced can result in long-term brain damage, heart problems and even suffocation.

Yet researchers are revealing a new potential health threat as a result of wildfires – some microbes and fungi known to cause human infections are able to survive in the smoke plumes. Wildfires disturb soils causing these microbes to become airborne. Within the smoke the microbes ‘travel’ on particulate matter which is likely to protect them from ultraviolet radiation.

Kobziar & Thompson (2020) argue that the ability of microbes to survive in smoke plumes means that wildfires could play a role in geographical patterns of infection and that more research is needed to understand this threat. Particulate matter from wildfire smoke has been found to travel inter-continental distances. Those living close to wildfires, and even more so those firefighters working on the front lines are likely to be most at risk to such microbes – the US Centre for Disease Control has already stated that firefighting is an at-risk profession for coccidioidomycosis, a fungal infection also known as Valley fever.

The researchers argue that too little is currently known about microbe survival and spread in wildfire smoke. Essential questions remain, the answers to which will only be more important as the likelihood of wildfires increases as a result of climate change.

Original research: Kobziar & Thompson, 2020, Science, ‘Wildfire smoke, a potential infectious agent’ https://science.sciencemag.org/cgi/doi/10.1126/science.abe8116

Extrapolation

Extrapolation

from laboratory tests.

Not always correct?

 

Experiments within the laboratory are often used to understand biological interactions in a controlled manner. Yet research by Comforth et al (2018) suggests that what we learn from the laboratory may not always represent what happens in reality.

The researchers found that Pseudomonas bacteria (a pathogen that threatens immunocompromised people) behaved differently in humans compared to under laboratory conditions. This was particularly apparent in the levels of gene expression involved in antibiotic resistance, cell to cell communication and metabolism. The implications of this work suggest laboratory studies only take us so far and further understanding bacterial behaviour in humans is just as important.

Original research: https://doi.org/10.1073/pnas.1717525115

Crop blighter

Rice blast: crop blighter.

Inhibiting one protein

stops the fungal spread.

 

Up to 30% of rice crop is destroyed by rice blast every year, causing huge welfare and economic costs. Sakulkoo et al (2018) have found that inhibiting a single protein enzyme in the fungus stops the spread of the blight through a rice plant.

The fungus’s mitogen-activated protein Pmk1 plays a role in suppressing its host’s immune system and controls the ability of the fungus to move from one rice cell to another. By inhibiting Pmk1’s kinase the fungus is trapped within the infected rice cell and is unable to spread and infect the rest of the rice plant. This latest discovery could point the way towards new rice blast control methods, resulting in increased food security and economic development.

Original research: http://dx.doi.org/10.1126/science.aaq0892