Whale strike

To avoid striking
whales, great creatures of the sea,
use the app. Impact!

Blue whales can be injured or killed in collisions with ships, particularly in regions where migration routes cross shipping lanes. Yet because they travel huge distances, predicting where whales will be at any given time is difficult. However, now research by Abrahms et al (2019) suggests that statistical modelling techniques may be able to help.

The researchers used satellite tracking data from 104 blue whales across 14 years along with daily information on three-dimensional oceanic habitats to model the whales’ daily distribution. By using an ensemble modelling approach they were able to produce daily, year-round predictions of blue whale habitat suitability in the Californian Current Ecosystem.

The statistical approach allows the researchers to quantify the spatial and temporal distribution of exposure to ship strike risk within shipping lanes in the Southern California Bight. The researchers plan on converting this approach into a downloadable app which would alert ships to the risks of whale collision and could recommend alternative shipping lanes or vessel slow-downs.

It’s a truly fascinating piece of research that seems likely to have a huge impact upon a real-world problem – research at its best.

The sciku also includes a line from Mr Scruff’s truly excellent track ‘Shanty Town’ from his ‘Keep It Unreal’ album released in 1999. The full line is ‘Whales! Great creatures of the sea! Please listen to me!’ It’s well worth checking out!

Original research: http://dx.doi.org/10.1111/ddi.12940

Knuckle cracking maths

Knuckle cracking maths:

Synovial bubbles pop

in partial collapse.

 

The debate over how knuckles cause a popping sound when cracked has lasted for decades. Now, Chandran Suja and Barakat (2018) have created three equations to mathematically model how the sound is produced. The first equation describes variations in pressure inside the joint, the second describes how pressure variations results in bubble size variations, whilst the third equation links the size variation of bubbles with the production of acoustic pressure waves.

When cracking your fingers the joints are pulled apart, the pressure goes down and bubbles appear in the synovial fluid which lubricates the joint. During knuckle cracking the pressure changes within the joint causing the size of the bubbles to fluctuate quickly resulting in the popping sound. The new model reveals that the bubbles don’t need to completely collapse in order to produce the sound, explaining why bubbles are observed following knuckle cracking.

Original research: http://dx.doi.org/10.1038/s41598-018-22664-4