Hibernation by Joy Stahl

Survival in space
Cold sleep on long missions
Arctic Ground Squirrel

by Joy Stahl

I’m a huge fan of science fiction novels and shows that use hibernation chambers to allow humans to reach distant planets in their lifetime.

I read an article about scientists who are studying arctic squirrels and how they hibernate, to create hibernation solutions for astronauts. Arctic squirrels are super-hibernators . They hibernate over winter for 7 to 9 months, reducing their core body temperature from 37 °C (99 °F) to as low as −2.9 °C (26.8 °F), and yet they manage to retain muscle and bone mass during this extended hibernation. Understanding this remarkable adaptation may help researchers looking at prolonged space travel and may also lead to improved critical and emergency health care and treatments.

Further reading:

‘Arctic squirrels may hold key to helping astronauts survive on long missions’, AccuWeather.com: https://www.accuweather.com/en/space-news/arctic-squirrels-may-help-astronauts-survive-long-missions/1481578

Author bio:

Joy Stahl is a middle school teacher in southwestern Kansas. Her poetry has appeared in Voices of Kansas. Check out Joy’s other sciku ‘1827-2023’!

Oh ketchup packet!

Oh ketchup packet!

How to get the last sauce out?

Hydrocarbon films!

 

Waste from packaging where food products can’t be completely extracted builds up. Now research by Mukherjee et al (2018) suggests a solution might be at hand. The researchers found that hydrocarbon-based polymer films can be stably impregnated with vegetable oils. The resulting material is slippery and durable, ideal for the inside of packaging to reduce food sticking and waste.

Whilst this sounds high-tech the researchers were actually inspired by the pitcher plant which uses a slippery coating on its leaves to capture visiting insects.

Original research: http://dx.doi.org/10.1038/s41598-018-29823-7

Snakeskin secrets

Learning from nature:

Snakeskin secrets revealing

lessons in friction.

 

The natural world has inspired engineering and design in countless ways. Now researchers are looking at snakeskins in an attempt to better understand an understudied engineering area: friction.

Abdel-Aal (2018) summarises findings from 40 species of snake to understand how the textural traits of snake skin compare to the standard features of textured industrial surfaces. This exploratory framework could subsequently lead to new, nature-inspired smart surfaces.

Original paper: https://doi.org/10.1016/j.jmbbm.2017.11.008

Closing the trap by Dr Hortense Le Ferrand

A feather falling –

hungry inert soul wakes up,

snaps, closing the trap.

The Venus flytrap, Dionaea muscipula, is a carnivorous plant that performs one of the fastest movements in the flora: when an insects touches the hairs inside the leaves of the trap, it closes in a few milliseconds.

Inspired by the plants and its internal microstructure, a team of researchers from ETH Zürich and Purdue University have developed a composite material mimicking the Venus leaf and able to change shape as fast as the plant (Schmied & Le Ferrand et al, 2017).

Thanks to the good match between the theoretical simulations and the experimental results, their method opens new avenues for the creation of autonomous and fast robotic devices.

Original research: https://doi.org/10.1088/1748-3190/aa5efd

Dr Hortense Le Ferrand is a postdoctoral fellow at Nanyang Technical University, Singapore. Hortense’s interests are on the fabrication and design of novel materials and systems inspired by nature. Check out her other scku ‘Shrimp molting’ here.